Semi-supervised Learning for Multi-label Classification
نویسندگان
چکیده
In this report we consider the semi-supervised learning problem for multi-label image classification, aiming at effectively taking advantage of both labeled and unlabeled training data in the training process. In particular, we implement and analyze various semi-supervised learning approaches including a support vector machine (SVM) method facilitated by principal component analysis (PCA), and a self-training method that iteratively conducts supervised learning and enlarges the set of training labels on the go. We compare the performances of semi-supervised learning methods with supervised learning benchmarks, and introduce a heuristic performance analysis for the training process. In addition, we analyze the impact of different training parameters for the PCA-SVM and the self-training method on the prediction performance. The algorithms are implemented for the ChestX-ray14 [32] medical image dataset.
منابع مشابه
A Novel Multi label Text Classification Model using Semi supervised learning
Automatic text categorization (ATC) is a prominent research area within Information retrieval. Through this paper a classification model for ATC in multi-label domain is discussed. We are proposing a new multi label text classification model for assigning more relevant set of categories to every input text document. Our model is greatly influenced by graph based framework and Semi supervised le...
متن کاملSemi-supervised multi-label image classification based on nearest neighbor editing
Semi-supervised multi-label classification has been applied to many real-world applications such as image classification, document classification and so on. In semi-supervised learning, unlabeled samples are added to the training set for enhancing the classification performance, however, noises are introduced simultaneously. In order to reduce this negative effect, the nearest neighbor data edi...
متن کاملTowards Multi Label Text Classification through Label Propagation
Classifying text data has been an active area of research for a long time. Text document is multifaceted object and often inherently ambiguous by nature. Multi-label learning deals with such ambiguous object. Classification of such ambiguous text objects often makes task of classifier difficult while assigning relevant classes to input document. Traditional single label and multi class text cla...
متن کاملSemi-supervised Multi-label Classification - A Simultaneous Large-Margin, Subspace Learning Approach
Labeled data is often sparse in common learning scenarios, either because it is too time consuming or too expensive to obtain, while unlabeled data is almost always plentiful. This asymmetry is exacerbated in multi-label learning, where the labeling process is more complex than in the single label case. Although it is important to consider semisupervised methods for multi-label learning, as it ...
متن کاملSemi-supervised Multi-label Learning Algorithm Using Dependency Among Labels
In this paper, we present a semi-supervised algorithm for multi-label learning by exploring the relationship among labels. Based on the accuracy, we determine the classification order for labels, a list of classifiers is trained by this order, with each classifier being trained by using the outputs of the previous classifiers in the list as additional input features. Experiments on three multi-...
متن کاملMulti-Label Classification with Unlabeled Data: An Inductive Approach
The problem of multi-label classification has attracted great interests in the last decade. Multi-label classification refers to the problems where an example that is represented by a single instance can be assigned tomore than one category. Until now, most of the researches on multi-label classification have focused on supervised settings whose assumption is that large amount of labeled traini...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017